Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Theranostics ; 14(5): 2246-2264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505620

RESUMO

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas , Insuficiência Cardíaca , Resistência à Insulina , Lipodistrofia , Proteínas Nucleares , Transativadores , ATPases Vacuolares Próton-Translocadoras , Animais , Camundongos , Cardiomiopatias Diabéticas/genética , Modelos Animais de Doenças , Glucose/metabolismo , Resistência à Insulina/genética , Lipídeos , Obesidade/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo
2.
Circ Res ; 134(5): 505-525, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422177

RESUMO

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Assuntos
Cardiomiopatias , Resistência à Insulina , Animais , Camundongos , Ratos , Adenosina Trifosfatases , Arginina , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Antígenos CD36/genética , Fibrose , Inflamação , Leucina , Lipídeos , Lisina , Alvo Mecanístico do Complexo 1 de Rapamicina , Miócitos Cardíacos , Mononucleotídeo de Nicotinamida , Receptor 4 Toll-Like/genética
3.
Hypertension ; 81(4): 861-875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38361240

RESUMO

BACKGROUND: Chemerin, an inflammatory adipokine, is upregulated in preeclampsia, and its placental overexpression results in preeclampsia-like symptoms in mice. Statins may lower chemerin. METHODS: Chemerin was determined in a prospective cohort study in women suspected of preeclampsia and evaluated as a predictor versus the sFlt-1 (soluble fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio. Chemerin release was studied in perfused placentas and placental explants with or without the statins pravastatin and fluvastatin. We also addressed statin placental passage and the effects of chemerin in chorionic plate arteries. RESULTS: Serum chemerin was elevated in women with preeclampsia, and its addition to a predictive model yielded significant effects on top of the sFlt-1/PlGF ratio to predict preeclampsia and its fetal complications. Perfused placentas and explants of preeclamptic women released more chemerin and sFlt-1 and less PlGF than those of healthy pregnant women. Statins reversed this. Both statins entered the fetal compartment, and the fetal/maternal concentration ratio of pravastatin was twice that of fluvastatin. Chemerin constricted plate arteries, and this was blocked by a chemerin receptor antagonist and pravastatin. Chemerin did not potentiate endothelin-1 in chorionic plate arteries. In explants, statins upregulated low-density lipoprotein receptor expression, which relies on the same transcription factor as chemerin, and NO release. CONCLUSIONS: Chemerin is a biomarker for preeclampsia, and statins both prevent its placental upregulation and effects, in an NO and low-density lipoprotein receptor-dependent manner. Combined with their capacity to improve the sFlt-1/PlGF ratio, this offers an attractive mechanism by which statins may prevent or treat preeclampsia.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Animais , Camundongos , Placenta/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fator de Crescimento Placentário , Pravastatina/farmacologia , Regulação para Cima , Estudos Prospectivos , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/prevenção & controle , Fluvastatina/metabolismo , Fluvastatina/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Biomarcadores , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
4.
Nutrients ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447205

RESUMO

Chemerin is a novel adipokine that plays a major role in adipogenesis and lipid metabolism. It also induces inflammation and affects insulin signaling, steroidogenesis and thermogenesis. Consequently, it likely contributes to a variety of metabolic and cardiovascular diseases, including atherosclerosis, diabetes, hypertension and pre-eclampsia. This review describes its origin and receptors, as well as its role in various diseases, and subsequently summarizes how nutrition affects its levels. It concludes that vitamin A, fat, glucose and alcohol generally upregulate chemerin, while omega-3, salt and vitamin D suppress it. Dietary measures rather than drugs acting as chemerin receptor antagonists might become a novel tool to suppress chemerin effects, thereby potentially improving the aforementioned diseases. However, more detailed studies are required to fully understand chemerin regulation.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Gravidez , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Quimiocinas/metabolismo , Adipocinas/metabolismo
5.
Lipids Health Dis ; 22(1): 12, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698175

RESUMO

BACKGROUND: The adipokine chemerin regulates adipogenesis and the metabolic function of both adipocytes and liver. Chemerin is elevated in preeclamptic women, and overexpression of chemerin in placental trophoblasts induces preeclampsia-like symptoms in mice. Preeclampsia is known to be accompanied by dyslipidemia, albeit via unknown mechanisms. Here, we hypothesized that chemerin might be a contributor to dyslipidemia. METHODS: Serum lipid fractions as well as lipid-related genes and proteins were determined in pregnant mice with chemerin overexpression in placental trophoblasts and chemerin-overexpressing human trophoblasts. In addition, a phospholipidomics analysis was performed in chemerin-overexpressing trophoblasts. RESULTS: Overexpression of chemerin in trophoblasts increased the circulating and placental levels of cholesterol rather than triglycerides. It also increased the serum levels of lysophosphatidic acid, high-density lipoprotein cholesterol (HDL-C), and and low-density lipoprotein cholesterol (LDL-C), and induced placental lipid accumulation. Mechanistically, chemerin upregulated the levels of peroxisome proliferator-activated receptor g, fatty acid-binding protein 4, adiponectin, sterol regulatory element-binding protein 1 and 2, and the ratio of phosphorylated extracellular signal-regulated protein kinase (ERK)1/2 / total ERK1/2 in the placenta of mice and human trophoblasts. Furthermore, chemerin overexpression in human trophoblasts increased the production of lysophospholipids and phospholipids, particularly lysophosphatidylethanolamine. CONCLUSIONS: Overexpression of placental chemerin production disrupts trophoblast lipid metabolism, thereby potentially contributing to dyslipidemia in preeclampsia.


Assuntos
Quimiocinas , Dislipidemias , Pré-Eclâmpsia , Feminino , Humanos , Gravidez , Adipocinas/metabolismo , Colesterol/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Placenta/metabolismo , Triglicerídeos/metabolismo , Trofoblastos/metabolismo , Animais , Camundongos , Quimiocinas/genética
6.
Biomed Res Int ; 2022: 4154697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479306

RESUMO

Glutaminyl cyclase (QC) is responsible for converting the N-terminal glutaminyl and glutamyl of the proteins into pyroglutamate (pE) through cyclization. It has been confirmed that QC catalyzes the formation of neurotoxic pE-modified Aß in the brain of AD patients. But the effects of upregulated QC in diverse diseases have not been much clear until recently. Here, RNA sequencing was applied to identify differentially expressed genes (DEGs) in PC12 cells with QC overexpressing or knockdown. A total of 697 DEGs were identified in QC overexpressing cells while only 77 in QC knockdown cells. Multiple bioinformatic approaches revealed that the DEGs in QC overexpressing group were enriched in endoplasmic reticulum stress (ERS) related signaling pathways. The gene expression patterns of 23 DEGs were confirmed by RT-qPCR, in which the genes related to ERS showed the highest consistency. We also revealed the protein levels of GRP78, PERK, CHOP, and PARP-1, and caspase family was significantly upregulated by overexpressing QC. Moreover, overexpressing QC significantly increased apoptosis of PC12 cells in a time dependent manner. However, no significant alteration was observed in QC knockdown cells. Therefore, our study indicated that upregulated QC could induce ERS and apoptosis, which consequently trigger diseases by catalyzing the generation of pE-modified mediators.


Assuntos
Aminoaciltransferases , Apoptose , Estresse do Retículo Endoplasmático , Animais , Ratos , Apoptose/genética , Biologia Computacional , Estresse do Retículo Endoplasmático/genética , Células PC12 , Aminoaciltransferases/metabolismo
7.
Mol Cell ; 82(21): 4099-4115.e9, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36208627

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic lipid accumulation, which can progress to nonalcoholic steatohepatitis (NASH). Histone deacetylase Sirtuin 6 (SIRT6) regulates NAFLD by regulating metabolism-related gene expression, but an extrachromosomal role for SIRT6 in NAFLD development remains elusive. We investigated whether SIRT6 functions on NAFLD in the cytoplasm. We found that SIRT6 binds saturated fatty acids, especially palmitic acid. This binding leads to its nuclear export, where it deacetylates long-chain acyl-CoA synthase 5 (ACSL5), thereby facilitating fatty acid oxidation. High-fat diet-induced NAFLD is suppressed by ACSL5 hepatic overexpression but is exacerbated by its depletion. As confirmation, overexpression of a deacetylated ACSL5 mimic attenuated NAFLD in Sirt6 liver-specific knockout mice. Moreover, NASH-hepatic tissues from both patients and diet-fed mice exhibited significantly reduced cytoplasmic SIRT6 levels and increased ACSL5 acetylation. The SIRT6/ACSL5 signaling pathway has a critical role in NAFLD progression and might constitute an avenue for therapeutic intervention.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sirtuínas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acil Coenzima A/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout , Ácidos Graxos/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Citoplasma/metabolismo
8.
Front Psychol ; 13: 922148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783694

RESUMO

The application of emotion in economic management is gaining attention. As an important irrational factor, personal emotion often plays a significant role in business decision-making activities. In the field of entrepreneurship, emotion also plays a crucial role, and more and more scholars are focusing on this interdisciplinary issue. However, the current research on emotion in entrepreneurship is still fragmented, and there is an urgent need for a more scientific and systematic approach to comprehensively organize the literature in this field, so as to lay the foundation for researchers to further research on emotion in entrepreneurship. In this study, VOSviewer was used to analyze the existing literature, and the results showed that the current research on emotion in the field of entrepreneurship mainly focuses on five research themes, namely, emotion and college students' entrepreneurship, family emotion and entrepreneurship, the role of emotion in successful entrepreneurship, emotional problems under the influence of entrepreneurial failure, and entrepreneurial passion.

9.
Nanomaterials (Basel) ; 12(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35683775

RESUMO

Low-cost and ecofriendly electrolytes with suppressed water reactivity and raised ionic conductivity are desirable for aqueous rechargeable batteries because it is a dilemma to decrease the water reactivity and increase the ionic conductivity at the same time. In this paper, Li2SO4-Na2SO4-sodium dodecyl sulfate (LN-SDS)-based aqueous electrolytes are designed, where: (i) Na+ ions dissociated from SDS increase the charge carrier concentration, (ii) DS-/SO42- anions and Li+/Na+ cations are capable of trapping water molecules through hydrogen bonding and/or hydration, resulting in a lowered melting point, (iii) Li+ ions reduce the Krafft temperature of LN-SDS, (iv) Na+ and SO42- ions increase the low-temperature electrolyte ionic conductivity, and (v) SDS micelle clusters are orderly aggregated to form directional ion transport channels, enabling the formation of quasi-continuous ion flows without (r.t.) and with (≤0 °C) applying voltage. The screened LN-SDS is featured with suppressed water reactivity and high ionic conductivity at temperatures ranging from room temperature to -15 °C. Additionally, NaTi2(PO4)3‖LiMn2O4 batteries operating with LN-SDS manifest impressive electrochemical performance at both room temperature and -15 °C, especially the cycling stability and low-temperature performance.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35682185

RESUMO

The relationship between employee mental health and job performance has been one of the key concerns in workplace. However, extant studies suffer from incomplete results due to their focus on developed economies' contexts and the unclear path of employee mental health's impact on performance. In this paper, we investigate the mechanism of employee mental health influencing job performance. We use the data of Chinese firms to test these hypotheses. Drawing on a sample of 239 firms from China, we find that employee mental health positively impacts job performance, and such relationship is mediated by innovative behavior and work engagement. The findings not only enrich the discipline's knowledge on mental health in an emerging economy setting but also extend the implications of mental health, innovative behavior, and work engagement to job performance.


Assuntos
Saúde Ocupacional , Desempenho Profissional , Satisfação no Emprego , Saúde Mental , Engajamento no Trabalho , Local de Trabalho/psicologia
11.
Clin Sci (Lond) ; 136(4): 257-272, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35103285

RESUMO

Maternal circulating levels of the adipokine chemerin are elevated in preeclampsia, but its origin and contribution to preeclampsia remain unknown. We therefore studied (1) placental chemerin expression and release in human pregnancy, and (2) the consequences of chemerin overexpression via lentivirus-mediated trophoblast-specific gene manipulation in both mice and immortalized human trophoblasts. Placental chemerin expression and release were increased in women with preeclampsia, and their circulating chemerin levels correlated positively with the soluble Fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio, a well-known biomarker of preeclampsia severity. Placental trophoblast chemerin overexpression in mice induced a preeclampsia-like syndrome, involving hypertension, proteinuria, and endotheliosis, combined with diminished trophoblast invasion, a disorganized labyrinth layer, and up-regulation of sFlt-1 and the inflammation markers nuclear factor-κB (NFκB), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß. It also led to embryo resorption, while maternal serum chemerin levels correlated negatively with fetal weight in mice. Chemerin overexpression in human trophoblasts up-regulated sFlt-1, reduced vascular endothelial factor-A, and inhibited migration and invasion, as well as tube formation during co-culture with human umbilical vein endothelial cells (HUVECs). The chemokine-like receptor 1 (CMKLR1) antagonist α-NETA prevented the latter phenomenon, although it did not reverse the chemerin-induced down-regulation of the phosphoinositide 3-kinase/Akt pathway. In conclusion, up-regulation of placental chemerin synthesis disturbs normal placental development via its CMKLR1 receptor, thereby contributing to fetal growth restriction/resorption and the development of preeclampsia. Chemerin might be a novel biomarker of preeclampsia, and inhibition of the chemerin/CMKLR1 pathway is a promising novel therapeutic strategy to treat preeclampsia.


Assuntos
Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pré-Eclâmpsia/etiologia , Trofoblastos/patologia , Animais , Linhagem Celular , Quimiocinas/genética , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Placenta/metabolismo , Placenta/patologia , Fator de Crescimento Placentário/metabolismo , Gravidez , Resultado da Gravidez , Trofoblastos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Nano Res ; 15(3): 2558-2566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34518776

RESUMO

MXene, as an emerging two-dimensional (2D) material with ultrathin structure and fascinating physiochemical properties, has been widely explored in broad applications. Versatile functions of MXenes are continuously explored. This work presents distinctive feature of MXene-Ti3C2T x nanosheets for free-radical (FRs) scavenging that never reported before. We demonstrated the mechanism and equation in regard to the reaction between Ti3C2T x and H2O2, which was applied to design colorimetric H2O2 strip assay with good performance. The good FRs scavenging capability of Ti3C2T x , including a series of reactive oxygen species (ROS) and reactive nitrogen species (RNS), was systemically confirmed. The antioxidation capability of Ti3C2T x for protecting cells from oxidative damage was demonstrated using the oxidative damage model of alpha mouse liver 12 (AML-12) cells. This original work provides huge opportunities for MXenes in FR-related biomedical applications. Electronic Supplementary Material: Supplementary material (further details of the experimental procedures, investigation of the reaction between Ti3C2T x and other oxidants, the characterization of endocytosis of cells for Ti3C2T x , and the comparison of different antioxidants for scavenging free radicals) is available in the online version of this article at 10.1007/s12274-021-3751-y.

13.
Front Endocrinol (Lausanne) ; 12: 725967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745001

RESUMO

The renin-angiotensin system (RAS) is crucially involved in the physiology and pathology of all organs in mammals. Angiotensin-converting enzyme 2 (ACE2), which is a homolog of ACE, acts as a negative regulator in the homeostasis of RAS. ACE2 has been proven to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic. As SARS-CoV-2 enters the host cells through binding of viral spike protein with ACE2 in humans, the distribution and expression level of ACE2 may be critical for SARS-CoV-2 infection. Growing evidence shows the implication of ACE2 in pathological progression in tissue injury and several chronic conditions such as hypertension, diabetes, and cardiovascular disease; this suggests that ACE2 is essential in the progression and clinical prognosis of COVID-19 as well. Therefore, we summarized the expression and activity of ACE2 under various conditions and regulators. We further discussed its potential implication in susceptibility to COVID-19 and its potential for being a therapeutic target in COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/prevenção & controle , Peptidil Dipeptidase A/fisiologia , Sistema Renina-Angiotensina/fisiologia , COVID-19/epidemiologia , Humanos , Terapia de Alvo Molecular , Pandemias , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
14.
J Healthc Eng ; 2021: 4345604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777734

RESUMO

Healthcare industry is strongly influenced by new digital technologies. In this context, this study creates a framework and explores determinants of the intention to use smart healthcare devices. Several factors were identified, including usefulness, convenience, novelty, price, technological complexity, and perceived privacy risks of smart devices. Based on the samples from China, we find that usefulness, convenience, and novelty have positive influences on the intention to use smart healthcare devices. However, technological complexity is negatively related to the intention to use smart devices. The results further extend previous researches in the area of the healthcare industry.


Assuntos
Atenção à Saúde , Intenção , Instalações de Saúde , Humanos , Privacidade , Política Pública
15.
Carbohydr Polym ; 270: 118401, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364634

RESUMO

Multicolored superhydrophobic coating with high durability has been receiving tremendous attention in decorative applications. Herein, a facile method to fabricate multicolored superhydrophobic coating with excellent robustness has been developed by using cellulose and chitosan. The multicolored coatings can be obtained through single dyeing or mixed dyeing based on three primary dyes. The coating can be applied on hard substrates (e.g. glass, aluminum sheet) and soft substrates (e.g. cotton fabric) by diverse methods including spraying, dip-coating and painting. The colorful coating firmly adheres to the substrates due to the multiple interactions (siloxane covalent bonds and hydrogen bonds). The colorful coating exhibits water-repellant behaviors and can withstand sandpaper abrasion, tape-peeling cycles, water impact, salt spray test and UV environments. Furthermore, the multicolored coating can be used as a new type of pigment for painting on different substrates and is expected to have a huge potential application in technological design or decoration.


Assuntos
Biomassa , Celulose/química , Quitosana/química , Corantes/química , Interações Hidrofóbicas e Hidrofílicas , Alumínio/química , Cor , Vidro/química , Pinturas , Politetrafluoretileno/química , Propriedades de Superfície , Têxteis , Água/química , Zeolitas/química
16.
Int J Mol Sci ; 22(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34299027

RESUMO

Soluble Fms-like tyrosine kinase-1 (sFlt-1) is increased in pre-eclampsia. The proton pump inhibitor (PPI) lowers sFlt-1, while angiotensin increases it. To investigate whether PPIs lower sFlt-1 by suppressing placental renin-angiotensin system (RAS) activity, we studied gene expression and protein abundance of RAS components, including megalin, a novel endocytic receptor for prorenin and renin, in placental tissue obtained from healthy pregnant women and women with early-onset pre-eclampsia. Renin, ACE, ACE2, and the angiotensin receptors were expressed at identical levels in healthy and pre-eclamptic placentas, while both the (pro)renin receptor and megalin were increased in the latter. Placental prorenin levels were upregulated in pre-eclamptic pregnancies. Angiotensinogen protein, but not mRNA, was detectable in placental tissue, implying that it originates from maternal blood. Ex vivo placental perfusion revealed a complete washout of angiotensinogen, while prorenin release remained constant. The PPI esomeprazole dose-dependently reduced megalin/(pro)renin receptor-mediated renin uptake in Brown Norway yolk sac epithelial cells and decreased sFlt-1 secretion from placental villous explants. Megalin inhibition blocked angiotensinogen uptake in epithelial cells. In conclusion, our data suggest that placental RAS activity depends on angiotensinogen taken up from the maternal systemic circulation. PPIs might interfere with placental (pro)renin-AGT uptake/transport, thereby reducing angiotensin formation as well as angiotensin-induced sFlt-1 synthesis.


Assuntos
Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Placenta/patologia , Pré-Eclâmpsia/patologia , Inibidores da Bomba de Prótons/farmacologia , Sistema Renina-Angiotensina , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Placenta/efeitos dos fármacos , Placenta/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Gravidez
17.
Biomaterials ; 276: 121030, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298442

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is estimated to affect a quarter of all population and represents a major health threat to all societies. Yet, currently no approved pharmacological treatment is available for MAFLD. H2-rich water has recently been reported to reduce hepatic lipid accumulation in MAFLD patients but its efficacy is limited due to low H2 dosage. Increasing H2 dose may enhance its therapeutic effects but remains technically challenging. In this study, we designed and synthesized a hydrogen nanocapsule by encapsulating ammonia borane into hollow mesoporous silica nanoparticles to achieve ultrahigh and sustained H2 release in the gut. We then investigated its efficacy in treating early-stage MAFLD and other metabolic dysfunctions such as obesity and diabetes. The hydrogen nanocapsule attenuated both diet-induced and genetic mutation induced early-stage MAFLD, obesity, and diabetes in mice, without any tissue toxicity. Mechanistically, we discovered that sustained and ultrahigh H2 supply by hydrogen nanocapsule increased, among other species, the abundance of Akkermansia muciniphila, highlighting reshaped gut microbiota as a potential mechanism of H2 in treating metabolic dysfunctions. Moreover, hepatic transcriptome showed a reprogramed liver metabolism profile with reduced lipid synthesis and increased fatty acid metabolism.


Assuntos
Nanocápsulas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Metabolismo dos Lipídeos , Camundongos , Nanocápsulas/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade
19.
Front Cardiovasc Med ; 8: 725203, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004870

RESUMO

Objective: Elevated plasma cholesterol concentrations contributes to ischemic cardiovascular diseases. Recently, we showed that inhibiting hepatic (pro)renin receptor [(P)RR] attenuated diet-induced hypercholesterolemia and hypertriglyceridemia in low-density lipoprotein receptor (LDLR) deficient mice. The purpose of this study was to determine whether inhibiting hepatic (P)RR could attenuate atherosclerosis. Approach and Results: Eight-week-old male LDLR-/- mice were injected with either saline or N-acetylgalactosamine-modified antisense oligonucleotides (G-ASOs) primarily targeting hepatic (P)RR and were fed a western-type diet (WTD) for 16 weeks. (P)RR G-ASOs markedly reduced plasma cholesterol concentrations from 2,211 ± 146 to 1,128 ± 121 mg/dL. Fast protein liquid chromatography (FPLC) analyses revealed that cholesterol in very low-density lipoprotein (VLDL) and intermediate density lipoprotein (IDL)/LDL fraction were potently reduced by (P)RR G-ASOs. Moreover, (P)RR G-ASOs reduced plasma triglyceride concentrations by more than 80%. Strikingly, despite marked reduction in plasma lipid concentrations, atherosclerosis was not reduced but rather increased in these mice. Further testing in ApoE-/- mice confirmed that (P)RR G-ASOs reduced plasma lipid concentrations but not atherosclerosis. Transcriptomic analysis of the aortas revealed that (P)RR G-ASOs induced the expression of the genes involved in immune responses and inflammation. Further investigation revealed that (P)RR G-ASOs also inhibited (P)RR in macrophages and in enhanced inflammatory responses to exogenous stimuli. Moreover, deleting the (P)RR in macrophages resulted in accelerated atherosclerosis in WTD fed ApoE-/- mice. Conclusion: (P)RR G-ASOs reduced the plasma lipids in atherosclerotic mice due to hepatic (P)RR deficiency. However, augmented pro-inflammatory responses in macrophages due to (P)RR downregulation counteracted the beneficial effects of lowered plasma lipid concentrations on atherosclerosis. Our study demonstrated that hepatic (P)RR and macrophage (P)RR played a counteracting role in atherosclerosis.

20.
Diabetes ; 69(9): 1887-1902, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641353

RESUMO

Endosomes help activate the hepatic insulin-evoked Akt signaling pathway, but the underlying regulatory mechanisms are unclear. Previous studies have suggested that the endosome-located protein WD repeat and FYVE domain-containing 2 (WDFY2) might be involved in metabolic disorders, such as diabetes. Here, we generated Wdfy2 knockout (KO) mice and assessed the metabolic consequences. These KO mice exhibited systemic insulin resistance, with increased gluconeogenesis and suppressed glycogen accumulation in the liver. Mechanistically, we found that the insulin-stimulated activation of Akt2 and its substrates FoxO1 and GSK-3ß is attenuated in the Wdfy2 KO liver and H2.35 hepatocytes, suggesting that WDFY2 acts as an important regulator of hepatic Akt2 signaling. We further found that WDFY2 interacts with the insulin receptor (INSR) via its WD1-4 domain and localizes the INSR to endosomes after insulin stimulation. This process ensures that the downstream insulin receptor substrates 1 and 2 (IRS1/2) can be recruited to the endosomal INSR. IRS1/2-INSR binding promotes IRS1/2 phosphorylation and subsequent activation, initiating downstream Akt2 signaling in the liver. Interestingly, adeno-associated viral WDFY2 delivery ameliorated metabolic defects in db/db mice. These findings demonstrate that WDFY2 activates insulin-evoked Akt2 signaling by controlling endosomal localization of the INSR and IRS1/2 in hepatocytes. This pathway might constitute a new potential target for diabetes prevention or treatment.


Assuntos
Endossomos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Gluconeogênese/genética , Teste de Tolerância a Glucose , Células Hep G2 , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...